(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(c(s(x), y)) → f(c(x, s(y)))
f(c(s(x), s(y))) → g(c(x, y))
g(c(x, s(y))) → g(c(s(x), y))
g(c(s(x), s(y))) → f(c(x, y))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(c(s(x), y)) →+ f(c(x, s(y)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x)].
The result substitution is [y / s(y)].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(c(s(x), y)) → f(c(x, s(y)))
f(c(s(x), s(y))) → g(c(x, y))
g(c(x, s(y))) → g(c(s(x), y))
g(c(s(x), s(y))) → f(c(x, y))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(c(s(x), y)) → f(c(x, s(y)))
f(c(s(x), s(y))) → g(c(x, y))
g(c(x, s(y))) → g(c(s(x), y))
g(c(s(x), s(y))) → f(c(x, y))
Types:
f :: c → f:g
c :: s → s → c
s :: s → s
g :: c → f:g
hole_f:g1_0 :: f:g
hole_c2_0 :: c
hole_s3_0 :: s
gen_s4_0 :: Nat → s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f,
gThey will be analysed ascendingly in the following order:
f = g
(8) Obligation:
TRS:
Rules:
f(
c(
s(
x),
y)) →
f(
c(
x,
s(
y)))
f(
c(
s(
x),
s(
y))) →
g(
c(
x,
y))
g(
c(
x,
s(
y))) →
g(
c(
s(
x),
y))
g(
c(
s(
x),
s(
y))) →
f(
c(
x,
y))
Types:
f :: c → f:g
c :: s → s → c
s :: s → s
g :: c → f:g
hole_f:g1_0 :: f:g
hole_c2_0 :: c
hole_s3_0 :: s
gen_s4_0 :: Nat → s
Generator Equations:
gen_s4_0(0) ⇔ hole_s3_0
gen_s4_0(+(x, 1)) ⇔ s(gen_s4_0(x))
The following defined symbols remain to be analysed:
g, f
They will be analysed ascendingly in the following order:
f = g
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol g.
(10) Obligation:
TRS:
Rules:
f(
c(
s(
x),
y)) →
f(
c(
x,
s(
y)))
f(
c(
s(
x),
s(
y))) →
g(
c(
x,
y))
g(
c(
x,
s(
y))) →
g(
c(
s(
x),
y))
g(
c(
s(
x),
s(
y))) →
f(
c(
x,
y))
Types:
f :: c → f:g
c :: s → s → c
s :: s → s
g :: c → f:g
hole_f:g1_0 :: f:g
hole_c2_0 :: c
hole_s3_0 :: s
gen_s4_0 :: Nat → s
Generator Equations:
gen_s4_0(0) ⇔ hole_s3_0
gen_s4_0(+(x, 1)) ⇔ s(gen_s4_0(x))
The following defined symbols remain to be analysed:
f
They will be analysed ascendingly in the following order:
f = g
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(12) Obligation:
TRS:
Rules:
f(
c(
s(
x),
y)) →
f(
c(
x,
s(
y)))
f(
c(
s(
x),
s(
y))) →
g(
c(
x,
y))
g(
c(
x,
s(
y))) →
g(
c(
s(
x),
y))
g(
c(
s(
x),
s(
y))) →
f(
c(
x,
y))
Types:
f :: c → f:g
c :: s → s → c
s :: s → s
g :: c → f:g
hole_f:g1_0 :: f:g
hole_c2_0 :: c
hole_s3_0 :: s
gen_s4_0 :: Nat → s
Generator Equations:
gen_s4_0(0) ⇔ hole_s3_0
gen_s4_0(+(x, 1)) ⇔ s(gen_s4_0(x))
No more defined symbols left to analyse.